Národní úložiště šedé literatury Nalezeno 19 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.00 vteřin. 
The minimum record time for PIV measurement in a vessel agitated by a Rushton turbine
Šulc, R. ; Ditl, P. ; Fořt, I. ; Jašíková, D. ; Kotek, M. ; Kopecký, V. ; Kysela, Bohuš
In PIV studies published in the literature focusing on the investigation of the flow field in an agitated vessel the record time is ranging from the tenths and the units of seconds. The aim of this work was to determine minimum record time for PIV measurement in a vessel agitated by a Rushton turbine that is necessary to obtain relevant results of velocity field. The velocity fields were measured in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter using 2-D Time Resolved Particle Image Velocimetry in the impeller Reynolds number range from 50 000 to 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. Three liquids of different viscosities were used as the agitated liquid. On the basis of the analysis of the radial and axial components of the mean- and fluctuation velocities measured outside the impeller region it was found that dimensionless minimum record time is independent of impeller Reynolds number and is equalled N. t(Rmin) = 103 +/- 19.
Local velocity scaling in T400 vessel agitated by Rushton turbine in a fully turbulent region
Šulc, R. ; Ditl, P. ; Fořt, I. ; Jašíková, D. ; Kotek, M. ; Kopecký, V. ; Kysela, Bohuš
The hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV). The experiments were carried out in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter. The velocity fields were measured in the zone in upward flow to the impeller for impeller rotation speeds from 300 rpm to 850 rpm and three liquids of different viscosities (i.e. (i) distilled water, ii) a 28% vol. aqueous solution of glycol, and iii) a 43% vol. aqueous solution of glycol), corresponding to the impeller Reynolds number in the range 50 000 < Re < 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller Reynolds number. On the basis of the test results the spatial distributions of dimensionless velocities were calculated. The axial turbulence intensity was found to be in the majority in the range from 0.388 to 0.540, which corresponds to the high level of turbulence intensity.
Simulation of collagen solution flow in rectangular capillary
Kysela, Bohuš ; Skočilas, J. ; Zitny, R. ; Stancl, J. ; Houska, M. ; Landfeld, A.
The viscoelastic properties of foods and polymers can be evaluated from flow of the material in capillary with specified dimension and shape. The extrusion rheometer equipped by capillary with rectangular cross-section was used for determination of the rheological behaviour of water collagen solution. The measurements of the axial profiles in longitudinal direction of the total stresses at capillary wall were performed for various shear rates. The linear viscoelastic model of Oldroyd B type: White-Metzner model was used for simulation of fluid flow in OpenFOAM software package. The simulations describe the effect of relaxation time on wall total stress in convergent-divergent capillary.
Evaluation of the turbulent kinetic dissipation rate in an agitated vessel
Kysela, Bohuš ; Konfršt, Jiří ; Chára, Zdeněk ; Sulc, R. ; Jašíková, D.
The design of agitated tanks depends on operating conditions and processes for that are used for. An important parameter for the scale-up modelling is the dissipation rate of the turbulent kinetic energy. The dissipation rate is commonly assumed to be a function of the impeller power input. But this approach gives no information about distribution of the dissipation rate inside the agitated volume. In this paper the distributions of the dissipation rate inside the agitated vessels are estimated by evaluations of the CFD (Computational Fluid Dynamics). The results obtained from RANS (Reynolds Averaged Navier-Stokes equations) k-epsilon turbulent model and LES (Large Eddy Simulations) with Smagorinsky SGS (Sub Grid Scale) model are compared. The agitated vessels with standard geometry equipped with four baffles and stirred by either a standard Rushton turbine or a high shear impeller were investigated. The results are compared with mean dissipation rate estimated from the total impeller power input.
Experiments of Bubble and Drop Breakup in a Turbulent Flow.
Zedníková, Mária ; Vejražka, Jiří ; Stanovský, Petr
Bubble and drop breakage in a turbulent flow is studied experimentally. In an experimental cell, the turbulent flow (of distilled water) is generated by an array of coaxial nozzles, which allows adjusting independently the turbulence intensity and the mean velocity. Either air or cyclohexane is injected in order to produce bubbles or drops. Their breakage by the turbulent flow is observed using a high-speed camera. The image processing provides information about particles in each image. Tracking software is developed and it allows to identify and characterize the breakup events (their location, number and sizes of daughter particles and also trajectories prior the breakup) and to distinguish them from a simple overlap of multiple bubbles. The parameters characterizing the breakup are then studied in dependence on local flow conditions.
Plný tet: SKMBT_C22016120713101 - Stáhnout plný textPDF
Plný text: content.csg - Stáhnout plný textPDF
Characterization of Turbulent Flow in a Breakup Cell.
Vejražka, Jiří ; Zedníková, Mária ; Stanovský, Petr
Our research focuses on breakup of bubbles and drops induced by a flow turbulence. In this contribution, we describe the experimental setup used for studying the breakup, and we characterize flow within it. The setup is a rectangular glass cell, in which a turbulent flow is generated by a set of coaxial nozzles. The flow within it is characterized by means of particle image velocimetry. From the velocity data, i) local dissipation rate (ε) is estimated using Large-Eddy PIV method, and ii) statistics of velocity difference in two points is evaluated. Estimation of ε is validated by integrating the total dissipation in the setup, which reasonably agrees with the injected kinetic energy. The probability density function of velocity difference is non-Gaussian and when properly normalized, it is universal within the setup.
Plný tet: SKMBT_C22016120713100 - Stáhnout plný textPDF
Plný text: content.csg - Stáhnout plný textPDF
Reconstruction of 3D PIV data in complicated experimental arrangements
Pavlík, D. ; Uruba, Václav ; Kopecký, V.
In this paper a three-dimensional reconstruction of flow field behind flat plate representing a wing\nis presented. The reconstruction is always performed for pair of 2D vector maps obtained by 3D PIV with two cameras which record measurement area from different locations. Three-dimensional reconstruction can be obtained in various ways. This paper summarizes two: the reconstruction based on the known correspondences and the reconstruction based on the knowledge of intrinsic and extrinsic parameters of cameras. The methods can be used in the cases when it is impossible to use a calibration pattern or when reconstruction by commercial software fails.
Coanda effect in valves
Uruba, Václav ; Procházka, Pavel P. ; Skála, Vladislav
Coanda effect takes place in flow within valves diffuser for certain conditions. The valve plug in\nhalf-closed position forms wall-jet, which could be stable or instable, depending on geometry and other\nconditions. This phenomenon was subject of experimental study using time-resolved PIV technique. For the acquired data analysis the special spatio-temporal methods have been used.
On 3D flow-structures behind an inclined plate
Uruba, Václav ; Pavlík, D. ; Procházka, Pavel P. ; Skála, Vladislav ; Kopecký, V.
Stereo PIV measurements has been performed behind the inclined plate, angle of attack 5 and\n10 deg. Occurrence and dynamics of streamwise structures behind the plate trailing edge have been studied in details using POD method. The streamwise structures are represented by vortices and low- and highvelocity regions, probably streaks. The obtained results support the hypothesis of an airfoil-flow force interaction by Hoffman and Johnson [1,2].
Taxonomic trees of fluidic oscillators
Tesař, Václav
Fluidic no-moving-part oscillators generating fluid flow pulsation became recently very popular subject of investigations. The reason is their capability to increase efficiency of various chemical and physical/chemical processes. Also control of flows past bodies is more effective with pulsation. Advantages of fluidic oscillators are lowcost, robustness, long life, no maintenance, and similar factors associated with absence of mechanical moving components. New oscillator principles - as well as old nearly forgotten but now re-discovered ones - are currently developed. Sheer number of possible alternatives makes them difficult to survey. This paper attempts at clarifying the situation by proposing three different approaches.

Národní úložiště šedé literatury : Nalezeno 19 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.